碩士生導(dǎo)師、教授名單

高大明

發(fā)布時(shí)間:2022-08-15瀏覽次數(shù):1815

職稱:校聘教授   姓名 高大明

Email : gaodamingtmm@163.com


教育經(jīng)歷:

  • 學(xué)士學(xué)位  江南大學(xué)

  • 博士學(xué)位  京都大學(xué)(日本)


工作經(jīng)歷:

  • 2006.07-2009.08 廣州百花香料股份有限公司

  • 2016.04-2017.09 京都大學(xué) 研究員

  • 2017.10-2019.05 江南大學(xué) 副教授

  • 2019.05-2021.09 神戶大學(xué) 研究員

  • 2022.10-現(xiàn)在    神戶大學(xué) 研究員(兼聘)


個人榮譽(yù):

  • 江蘇省“雙創(chuàng)博士”


社會兼職(社會兼職填是否擔(dān)任過專業(yè)雜志編委、專業(yè)委員會委員、專業(yè)協(xié)會會員等)

  • SCI期刊Catalysts 客座編輯

  • 第六屆國際化學(xué)工程會議 組委會委員

  •  ACS Catalysis、ACS Sustainable Chemistry and Engineering、New Journal of Chemistry等國際期刊審稿人



研究方向:催化化學(xué)、固體催化劑合成、反應(yīng)動力學(xué)


教學(xué)科研項(xiàng)目:

  1. 江蘇省雙創(chuàng)博士人才項(xiàng)目,2018~2020年,15RMB,主持

  2. 公益財(cái)團(tuán)法人飯島藤十郎食品科學(xué)與技術(shù)振興會研究助成金,日本財(cái)團(tuán)資助2014~2015年,98,主持(唯一一位獲得資助的外國人研究者)

  3. 亞臨界流體中糖異構(gòu)化的反應(yīng)機(jī)理,JSPS KAKENHI (No. 26870296; T. K. As one of collaborators),共同主持

  4. 階層性多孔ODS色譜柱的開發(fā),日本政府-京都大學(xué)-SnG公司三方合作項(xiàng)目,主持

  5. 食品熱加工過程中典型危害物控制關(guān)鍵技術(shù)研究,廣東省重點(diǎn)研發(fā)計(jì)劃,2019年,子課題負(fù)責(zé)人

  6. 大豆纖維的改造,橫向項(xiàng)目,2018~2019年,15RMB主持

  7. 食品安全檢測及其標(biāo)準(zhǔn)方法的研究,橫向項(xiàng)目2018~201828RMB,主持

  8. 嬰幼兒米粉的制造過程的物性解析及稀少糖類的制造新技術(shù)開發(fā)橫向項(xiàng)目,2018~2020年,100RMB,主持

  9. 新型高濃度高力価汎用性乳主原の開発,日本株式會社サンアロマ,2020-2021,350日元,橫向項(xiàng)目,主持

  10. 熱反応による高天然感キャラメル風(fēng)味油の製造技術(shù)開発,日本株式會社サンアロマ,2020-2021,300日元,橫向項(xiàng)目,主持

  11. 熱反応によるミルクチョコレート風(fēng)味油の開発,日本株式會社サンアロマ,2020-2021200日元,橫向項(xiàng)目主持

  12. 吸附脫附過程的分子運(yùn)動研究,湖南華思儀器有限公司2022-20230.2RMB,橫向項(xiàng)目,主持。



發(fā)表論文


  1. Liu, Q., Liu, H-C, Gao, D-M.* (2022). Establishing a kinetic model of biomass-derived disaccharide hydrolysis over solid acid: A case study on hierarchically porous niobium phosphate. Chem. Eng. J. 430, 132756.

  2.   Gao, D-M.*,Shen, Y-B., Zhao, B., Liu, Q., Nakanishi, K., Chen, J., Kanamori, K., Wu, H., He, Z., Zeng, M., Liu, H.-C.(2019). Macroporous niobium phosphate-supported magnesia catalysts for isomerization of glucose-to-fructose. ACS Sustain. Chem. Eng. 7 (9), 8512?8521.

  3. Gao, D.-M.*,ZhaoB.-H.,Liu, H.-C.,Morisato, K.,Kanamori, K., He, Z.-Y., Zeng,M.-M., Wu H.-P., Chen, J., * NakanishiK.* (2018)Synthesis of a hierarchically porous niobium phosphate monolith by a sol–gel method for fructose dehydration to 5-hydroxymethylfurfral. Catal. Sci. Technol.8, 3675?3685.

  4. Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Production of rare sugars from common sugars insubcritical aqueous ethanol. Food Chem., 175, 465–470.

  5. Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Kinetic effect of alcohols on hexose isomerization under subcritical aqueous conditions. Chem. Eng. Res. Des., 104, 723–729. 

  6. Gao, D.-M., Kobayashi, T., and Adachi, S. (2014). Kinetics of sucrose hydrolysis in a subcritical water-ethanol mixture. J. Appl. Glycosci., 61, 9–13.

7Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Kinetic analysis for the isomerization of glucose, fructose, and mannose in subcritical aqueous ethanol. Biosci. Biotechnol. Biochem., 79, 1–6..

8Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Promotion or suppression of glucose isomerization in subcritical aqueous straight- and branched-chain alcohols. Biosci. Biotechnol. Biochem., 79, 470–474..

9Gao, D.-M., Kobayashi, T., and Adachi, S. (2015). Solubility of D-galactose, D-talose, and D-tagatose in aqueous ethanol at low temperature. Food Sci. Technol. Res., 21, 801–803. .

10.Gao, D.-M., Kobayashi, T., and Adachi, S. (2016). Production of keto-disaccharides from aldo-disaccharides in subcritical aqueous ethanol. Biosci. Biotechnol. Biochem., 80, 998–1005..

11. Gao, D.-M., Kobayashi, T., and Adachi, S. (2016). Promoted isomerization of aldoses to ketoses in subcritical aqueous acetonitrile. Can. J. Chem. Eng., 95, 359?363.

12. Soisangwan, N., Gao, D.-M., et.al. (2016). Kinetic analysis for the isomerization   

of cellobiose to cellobiulose in subcritical aqueous ethanol. Carbohydr. Res., 433,

6772.

  1. Soisangwan, N., Gao, D.-M., et.al.(2017). Production of lactulose from lactose

insubcritical aqueous ethanol. J. Food Proc. Eng.40(2), e12413..

  1. Jiao, Y., Yan, Y., He, Z-Y., Gao, D.-M., et.al. (2018). Inhibitory effects of

catechins on β-carbolines in tea leaves and chemical model systems. Food Funct., 9, 31263133.

  1. Xue, C., He, Z., Gao, D., Qin, F., Chen, J., Zeng, M. (2018). Research progress

on heterocyclic amines in processed meat products. J. Food Safety Quality, 9(14), 3590-3597.

  1. Yang, D-D., He, ZY., Gao, D.-M.,et.al. (2018). Effects of smoking or baking

procedures during sausage processing on the formation of heterocyclic amines measured using UPLC-MS/MS. Food Chem., 276, 195201.DOI: doi.org/10.1016/j.foodchem.2018.09.160.

  1. Yin, Q., Mu, H., Zeng, M., Gao, D., Qin, F., Chen, J., & He, Z. (2019). Effects of

heating on the total phenolic content, antioxidant activities and main functional components of simulated Chinese herb candy during boiling process. J. Food Measurement and Characterization, 13(1), 476-486.

  1. Jiao,Y., Quan,W., He,Z.,Gao, D.-M., Qin,F., Zeng,M., Chen.J., (2019). Effects of

Catechins on Nε-(Carboxymethyl)lysine and Nε-(Carboxyethyl)lysine Formation in Green Tea and Model Systems. J. Agr. Food Chem., 67 (4), 12541260.

  1. Jiao, Y., He, J., He, Z.,Gao, D.-M., Qin, F., Xie, M., Zeng, M., Chen, J. (2019).

Formation of Nε-(carboxymethyl) lysine and Nε-(carboxyethyl) lysine during black tea processing. Food Res. Int., 121, 738745.

  1. Chen,W., Liang,G., Li,X., He,Z., Zen,M.,Gao, D.-M., Qin,F., Goff,H-D., Chen, J,.

(2019). Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream. Food Hydrocolloid., 94, 279286.

21. Quan, W., He,W., Lu,M., Yuan,B., Zeng,M.,Gao, D.-M., Qin,F., Chen,J.,  He.Z., (2019). Anthocyanin composition and storage degradation kinetics of anthocyanins-based natural food colourant from purplefleshed sweet potato. Int. J. Food Sci. Tech. 54 (8), 25292539.

22. Chen, W., Liang, G., Li, X., He, Z., Zeng, M., Gao, D., Chen, J. (2019). Impact of

soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability. Colloid. Surface. B: Biointerfaces, 177, 550558.

  1. Niu, K., Liu, Z., Feng, Y., Gao, D., Wang, Z., Zhang, P., Fang, X. (2020). A novel

strategy for efficient disaccharides synthesis from glucose by β-glucosidase.Bioresour. Bioprocess. (2020) 7:45.


X